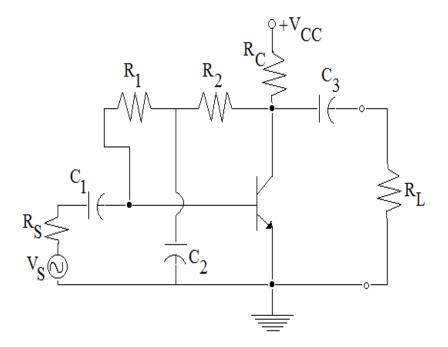
Q.2 a. Explain any one of the Basic Planner process used in IC fabrication

Ans: Page – 7 to 8 of Textbook-II


b. Explain Enhancement type MOSFET fabrication process.

Ans: Page - 28 to 29 of Textbook-II

Q.3 a. Draw the h-parameter equivalent circuit of Common Collector Amplifier circuit and derive the expressions for input impedance, output impedance, voltage gain and current gain.

Ans: Page 155 to 157 of Textbook-I

b. Calculate the input impedance, output impedance and voltage gain for the circuit shown below; $R_1=39$ K Ohm, $R_2=47$ K Ω , $R_c=1.8$ K Ω , $R_L=68$ K Ω and $h_{fe}=80$, $h_{ce}=1.5$ µS, $h_{ie}=1.2$ K Ω .

Ans: Page 151 to 153 of Textbook-I

Q.4 a. Explain, with a neat diagram, the working of n-channel JFET.

Ans: Page 221 to 223 of Textbook-I

b. For given IRF520

V _{DS} (max)	I _D (max)	$P_{\rm D}({\rm max})$	r _d (on)
100V	8A	40W	0.3 Ω

g _{FS}	V _{GS} (Th)	
1.5S(min)	2V(min)	
2.9 S(typ)	4V(max)	

Calculate the gate – source voltage required to produce a 7A drain current in an IRF520. Determine the drain source ON voltage and the device power dissipation at $I_D = 7A$.

Ans: Page 374 of Textbook-I

Q.5 a. Explain with a diagram, the working of a Class B push pull power amplifier.

Ans: Page 523 to 524 of Textbook-I

b. Explain the complementary Emitter Follower Circuit.

Ans: Page 530 to 531 of Textbook-I

Q.6 a. Write the characteristics of an ideal op-amp.

Ans: Page – 41 to 42 of Textbook-II

b. Derive an expression for the gain of an Inverting Amplifier using op-amp.

Ans: Page 43 of Textbook-II

Q.7 a. Explain the working of a differentiator using an op-amp.

Ans: Page 164 to 167 of Textbook-II

b. Explain the working of the following circuits using op-amp.(i) Voltage to Current Converter (ii) Current to Voltage Converter

Ans: Page 146 to 147 of Textbook-II

Q.8 a. Explain the working of monostable multivibrator using an op-amp.

Ans: Page 218 to 220 of Textbook-II

© IETE

b. Explain the working of an astable multivibrator using an op-amp and derive the expression for frequency of output wave.

Ans: Page 318 to 320 of Textbook-II

Q.9 a. Explain the working of a Series Op-Amp Regulator.

Ans: Page 240 to 241 of Textbook-II

b. Explain the working of Successive Approximation Type ADC.

Ans: Page 361 to 363 of Textbook-II

Textbooks

I. Electronic devices and Circuits by David A Bell (3rd Edition)

II. Linear Integrated Circuits by D.Roy Choudhary and Shail B. Jain (4th Edition)